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The singularity in axially symmetric fields 
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Departamento de Fisica Matemitica, Instituto de Fisica, UFRJ, Rio de Janeiro, Brasil 

Received 4 September 1978, in final form 2 5  October 1978 

Abstract. A static axially symmetric solution of the Einstein-MaxweII-scalar equations is 
obtained. For vanishing electric and scalar charges the metric reduces to the Curzon metric. 
The effect of these fields in the structure of the singularities has been analysed. 

1. Introduction 

In  a paper, Gautreau and Anderson (1967) evaluated the Kretschmann scalar 
R,,,R for an axially symmetric Weyl gravitational field. They investigated the 
behaviour of this invariant in the case of the Curzon (1924) metric. From the analysis of 
this scalar it is found that the singular behaviour of the scalar depends on the direction in 
which the singular point is approached. Later, Stachel (1968) demonstrated that the 
Curzon metric contains a singular event horizon of infinite area for positive mass. The 
approach to the origin along different directions corresponds to an approach to different 
limiting points on the infinite surface. 

In a subsequent paper, Gautreau (1969) studied several Weyl fields to determine the 
changes that occur in the topological properties of the singularities with the coupling of 
a long-range scalar field. Later, Datta and Rao (1973) extended the study of Gautreau 
to the case when the electromagnetic field is also coupled. They found that their 
solution did not show any directional singularity. However, in computing the 
Kretschmann scalar, they did not take into account the contribution from an exponen- 
tial factor multiplying all the terms of the scalar. The contribution of the exponential 
factor is contrary to their conclusion. 

In the present paper, we re-examine the topological properties of the singularities of 
a static, axially symmetric metric corresponding to the coupled gravitational, elec- 
tromagnetic and long-range scalar fields. We obtain a more general class of exact 
solution than those already known for the coupled field equations with the Curzon 
solution as the corresponding solution for the empty-space field equations. To obtain 
the coupled field solutions, we use the method prescribed by Teixeira er a1 (1976, 
henceforth called the TWS method) to develop the coupled field solutions for elec- 
tromagnetic and long-range scalar fields from the vacuum solutions. Recently, Som et 
a1 (1977) showed that the method obtained by Janis et a1 (1969) for developing the 
coupled field solutions used by Datta and Rao is a special case of the TWS method, 

In § 2 we present a brief review of the TWS method. § 3 contains the coupled field 
equations and their solutions. In the following sections we analyse the singular structure 
of the metric obtained. 
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2. TWS method 

In this section we review the TWS method for developing the coupled field solutions for 
the Einstein-Maxwell-scalar equations. 

If the static metric of the line element 

ds2=ezv(dx0)2-e-2Vhij  dx’dx’, (2.1) 
where V and hij are functions of xi (italic indices vary from 1 to 3), represents the 
vacuum solutions of the Einstein equations, then the metric of the line element 

ds2 = e2W(dxo)2 -e-’*hii dx’ dx’ (2.2) 

is a static solution of the Einstein-Maxwell-scalar equations, where 

= -ln(A cosh C V  + B sinh CV). (2.3) 

s = fC,V (2.4) 

A,  B and C are constants of integration. The scalar field is then given by 

where the upper (lower) sign corresponds to the attractive (repulsive) type of scalar field 
and c, is the constant of integration. The constants C and c, are related by 

c = (1 T c y .  (2.5) 
The electrostatic potential q5 (x ’) and the electrostatic field Foi (x’) are 

a 
AC 

q5(xi) = -- eW sinh CV (2.6) 

(2.7) 
where a is another constant of integration. The four constants A,  B, C and a are 
related by 

B’-A’ = a Z / C 2 .  (2.8) 

F“ = (b1a)J-g 6 0 i i k 4 , k  (2.9) 
where b is a constant related to the angle of duality rotation 8 by tan 8 = -b/a.  The 
relation (2.8) then takes the form 

2 W  Fo,(xi)  = a e V,; 

One can easily generalise (2.3) by including a magnetostatic field 

B2-A’= ( a 2 + b z ) / C 2 .  (2.10) 

In the following sections, we are concerned only with the electrostatic fields, so that A,  
B, C and a satisfy (2.8). 

3. The coupled field equations and their solutions 

In the region of space-time containing an electromagnetic field satisfying Maxwell’s 
equations 

(3.1) 

F[ij;*] = 0 (3.2) 

Fji. = 0 
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where 
F, .  = A .  . - A .  . 

11 1.1 I./ 

and a long-range scalar field satisfying 

g‘Js;ij = 0 

the field equations are given by 

R’”” -;8’”,B = -8tr(E’”, +S’” , )  

(3.3) 

(3.4) 

(3.5) 

where 

(- FUaFa” + $S’”JQ$’”) (3.6) 
1 

4tr 

*l 
477 

E’”, = - 

S @ ”  = -(s;”s;, -$8’”s;Qs;Q). (3.7) 

To obtain the static solution of (3.5) we consider the Curzon metric as empty-space 
solutions of the Einstein field equations. In Weyl’s canonical coordinates, the Curzon 
metric is given by 

(3.8) 

The Weyl canonical coordinates require that the field equations must satisfy (Synge 

ds2 = exp(-2m/p)(d~’)~ - exp(2m/p) [exp( -m2r2 /p4) (dr2  +dz2)+ r2 d4’] 

where p = (r2 + 

1976). 

Since for an axially symmetric field in Weyl’s canonical coordinates, all the field 
components are functions of r and z,  it is evident from (2.7) that the only non-zero 
components of the electromagnetic field tensor are Fol and FO2. Then from (3.6) we find 
that 

R: + R E  = 0. (3.9) 

1 
8tr 

E: = -E: = +- (FolF*’+ Fo2F20) 

and from (3.7) 

(3.10) 

*1 
8tr 

s; = -s: = - (S;’s;’ - S i 2 S 2 )  (3.11) 

so that Si + S :  = 0. This implies that R = 874s: + S : ) .  Then from (3.5) we have 

R: +R: -R =-8tr(SE + S : )  

so that RE +R: = 0. One can now easily obtain the solutions of (3.5) from (3.8) 
following the presciption given by the TWS method. It leads immediately to 

ds2 = { A  cosh(Cm/p) + [A2 + (a2/C2)1’2 sinh(Cm/p)}-2(dx0)2 

- { A  cosh(Cm/p) + [A2 + (a2/C2)]1’2 ~ i n h ( C m / p ) } ~ [ e x p ( - m ~ r ~ / p ~ )  

x (dr2+ d r2 )  + r2 dd2]. (3.12) 
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The scalar field (2.4) is then given by 

s , ~  = *c,mr/p3 s.2 = *c,mz/p3. (3.13) 

The electrostatic potential 4 and the electrostatic field Foi are 

4 = + ( u / A C )  ey sinh(Cm/p) (3.14) 

F~~ = mu e2*r/p3 

F~~ = mu eZyz/p3. 
(3.15) 

The constant U admits an easy interpretation from the asymptotic behaviour of the 
metric (3.12). As p + 03, A = 1 , 4  + ma/p and Foi + muxi/p , where x1 = r and x2 = z .  

Then mu = 4, so that (3.14) and (3.15) reduce to 

3 

def 

4 = (q/mC) ep sinh(Cm/p) 

Foi = q e xi/p . 2* 3 
(3.1 5’) 

When U = 0, the metric (3.12) is equivalent to that obtained by Gautreau (1969). The 
metric obtained by Datta and Rao (1973) corresponds to the case A = 0, U = C. If one 
demands that when a = 0, c, = 0, then the metric corresponds to (3.8) and one must 
have A = 1. So the metric (3.12) takes the form 

ds2 = {cosh(Cm/p) + [1+ ( u ~ / C ~ ) ] ” ~  sinh(Cm/p)}-2(dx0)2 
-{cosh(Cm/p) +[1+ ( u 2 / C  2 )] 1 /2  ~ i n h ( C m / p ) } ~ [ e x p ( - m ~ r ~ / p ~ )  

x (dr2 +dz2)  + rz d42]. (3.16) 

The metric (when c, = 0, i.e. C = 1) may be called the Reissner-Nordstrom equivalent 
for the Curzon metric. The metric (3.16) reduces to the original vacuum metric (3.8) 
when a = 0. In the following section we consider the metric (3.16). 

4. Directional singularity 

To analyse the directional properties of the singularity we compute the Kretschmann 
scalar 

a = R ”“”R 

= 4{cosh(Cm/p) + [1+  ( U ~ / C ~ ) ] ” ~  ~inh(Cm/p)}-~ exp(2mzr2/p4) 

X [(R ‘ 2 1 2 ) ~ +  ( R 3 i 3 i ) ’ +  2 ( R 3 ~ 3 z ) 2 + ( R 3 z 3 z ) 2  

+ ( R 0 1 0 1 ) 2 + 2 ( R 0 1 0 2 ) 2 +  (Rozod2+ ( 3 ° 3 0 3 ) 2 1  (4.1) 
where 

exp( - m2r2/p4) 
r2 R 0 3 0 3 *  9’303 = 

The surviving components of R”,, are given in the Appendix. When p + O’, a careful 
examination of all of the eight surviving components shows that exp(2m2r2/p4) in (4.1) 
dominates and tends to infinity as p + 0, indicating an intrinsic singularity along every 
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trajectory except for an approach along the Z axis. As the origin is approached along 
the 2 axis, i.e. r = 0, we find that the terms 

{cosh(mC/p)+[l + ( u ~ / C ~ ) ] ~ / ~  sinh(Cm/p)}-“ where n = 2 , 3 , 4  

dominate and tend to zero as p + 0, suggesting that it is not the location of an intrinsic 
singularity. If one considers the space-like geodesic defined by the semi-2 axis, it is 
infinitely long in the sense of the affine path parameter. So the space-like half-geodesic 
is complete, indicating that it does not define a singularity in the direction p + 0. 

5. The equipotential areas 

To analyse the structure of the singularities we follow the procedures used by Stachel 
(1968). A singularity will be considered to be localised if the invariantly defined 
equipotential area approaches zero as the coordinate location of the singularity is 
approached. To compute the equipotential area, we re-express (3.12) in the spherical 
coordinates 

ds2 = {cosh(mC/p) + [I + ( u ~ / C ~ ) ] ” ~  sinh(mC/p)}-2(dx0)2 
-{cosh(mC/p)+[l + ( a 2 / C  2 ) ]  1/2 sinh(mC/p)}2 

x[exp(-m2 sin28/p2)(dp2+p2 d02)+p2  sin’f3 ~c#J’]. (5.1) 

The area of the equipotential surfaces p = constant, x o  = constant has the form 

A = 4.rrp2{cosh(mC/p) + [ 1 +  ( a 2 / C ’ ) ] ’ / 2  sinh(mC/p)}’ 
.1 

x J exp(-m2 sin’ e)/2p2) d(cos e). (5.2) 
0 

A careful examination of (5.2) leads to 

indicating that A ( p )  has at least one minimum. This implies that the equipotential 
surfaces shrink in ;*rea asp  decreases from a large value until they reach a minimum. On 
further decreasing p in value, they start to increase in area tending to infinity as p + 0’. 

6. Discussion 

Starting from the Curzon solution, we obtained the solution (3.16) of the Einstein- 
Maxwell-scalar field equations. When the scalar field vanishes the solution represents 
the static charged Curzon metric. It is found that the addition of a long-range scalar 
field and the electromagnetic field does not produce any change in the properties of 
quantities defined invariantly such as the Kretschmann scalar and the areas of the 
equipotential surf aces. 
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Appendix 

The surviving components of the Riemann-Christoffel tensor with respect to the metric 
(3.12) are 

m a 2  
R 1 2 1 2 = T ( C z ~ { c o s h ( C m / p ) + [ l  P + ( u ~ / C ~ ) ] ” ~  ~inh(Cm/p)}~  

+1+ m 2  U 2  

P {cosh(Cm/p) + [1+ ( u ~ ” ’ ) ] ’ ’ ~  sinh(Cm/p)} 

a2(z2 - r2) 
{cosh(Cm/p) + [1+  ( u ~ / C ~ ) ] ’ ’ ~  sinh(Cm/p)}2 

R3131 = % ( c 2 z 2 +  2 2 -  r’+ 
P 

m(r2-2z2) m3(r4-3z r + 
P9 

a 2  
x c2+ ( {cosh(Cm/p)+[l -t (U’/C~)]’’~ ~inh(Cm/p)}~  

a2(z2-3rZ) 
{cosh(Cm/p) + [1+ ( U ~ / C ’ ) ] ’ ’ ~  sinh(Cm/p)}2 

m m(r2-2z2) m3(r4-3z2r2) + 
P9 

a 2  
{cosh(Cm/p) + [1+ (u’/C~)]’’~ ~inh(Cm/p)}~  

x c2+ ( 
a 2(z2  - r2) 

{cosh(Cm/p) + [1+ ( u ~ / C ~ ) ] ” ~  sinh(Cm/p)}2 

a 2  
2 1/2 x c2+ ( {cosh(Cm/p)+[l+(a2/C )] sinh(Cm/p)}2 

a 2(32 - r2) 
{cosh(Cm/p)+[l+ ( a 2 / C  2 13 1/2 sinh(Cm/p)}2 

R0202=!$(C2(2z2-r2)+ P 

a 2  x cz+ ( {cosh(Cm/p)+[l +(a2/C2)]’/’ sinh(Cm/p)}’ 
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m 'rz 2a2 
R 3132 = -7 ( c2 + 2 + 

P {cosh(Cm/p) + [1+ (az/C2)]'1z sinh(Cm/p)}2 

3(rz3 - 3zr3) )  
+( -73rz-  m 

P 9  

a' 
x c2+ 2 112 ( {cosh(Cm/p)+[l + ( a 2 / C  )] sinh(Cm/p)}' 

m 2  a '4rz 
~ ~ ~ ~ ~ = 7 ( 3 ~ ~ r z +  {cosh(Cm/p)+[l + ( a 2 / C  2 )] 112 sinh(Cm/p)}' 

P 

a' 
{cosh(Cm/p) + [ 1 +  ( U ~ / C ~ ) ] ' / ~  ~ inh(Cm/p)}~  

x c2+ ( 
Z 

R 0 3 0 3 = 7  
exp(-m 2r2/p4)  - m  

r2 P 
3 ' 3 0 3  = 

a 2  
x c2+ ( {cosh(Cm/p)+[l + (a2/C2)]1/2 sinh(Cm/p)}' 

a 2  
+7 ( cz+ {cosh(Cm/p)+[l+ ( a 2 / C 2 ) ]  ~inh(Cm/p)}~  

P 
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